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We present a new method for incorporating arbitrarily strong static homogeneous
external magnetic fields into molecular dynamics computer simulations. Conven-
tional techniques dealing with magnetic fields demand the simulation timeAstep
to be small compared to the Larmor oscillation time/22. In our method, in con-
trast, the magnetic field is built into the propagation equations in such a way as to
make the choice oAt entirely independent of72/ 2. Thus, the time step is deter-
mined only by the internal physical properties of the system under consideration.
This property of our method is essential for simulating strongly magnetized systems
of charged patrticles in an efficient way. The method is developed in the framework
of the second-order Velocity Verlet propagation scheme. However, the underlying
concept is independent of this choice, and a generalization to arbitrary order without
any reference to a specific propagation scheme is also givemoeg Academic Press

1. INTRODUCTION

At its very heart, classical (i.e., non-quantum-mechanical and nonrelativistic) molect
dynamics (MD) is the problem of numerically solving Newton’s equations of motion fc
a system of many particles interacting with each other, possibly under the influence
external fields.

Here we consider systems of charged particles exposed to a static (i.e., time-indepent
homogeneous external magnetic field. Implementing an external magnetic field into a |
simulation is not difficult a priori, but since MD follows the trajectory of each individua
simulation particle, the time steft of the simulation has to be chosen small enough to hav
a sufficient number of steps per Larmor oscillation in order to follow the spiralling motic
of the particles correctly: A particle of specific chaggem performs Larmor oscillations of
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frequency2 = g B/m when influenced by a magnetic fieRl The condition for the choice
of At in a straightforward implementation is therefore

|
QAt « 2. (1)

When the magnetic field is weak, i.e., when the time sgaldefined by the interactions
within the system itself is small com'pared to /X2, the choice ofAt is dominated by,
and (1) is automatically fulfilledAt < iy < 27/ Q. At strong magnetic field, however,
where Zr/ Q <« 1int, the MD simulation would have to perform a huge number of ven
small time steps to cover time intervals of the ordet;gfwhile obeying (1), and it would
thus be numerically very expensive to simulate the internal evolution of the system un
the influence of a strong magnetic field.

The aim of this paper is to present a numerical algorithm which allows one to simul:
systems of charged particles under the influence of strong static external magnetic fi
without having to fulfill condition (1); i.e., there may be an arbitrary humber of Larmc
oscillations per time step, yet still the particle trajectory is sampled correctly to within tl
order of the propagation schqme. Consequently, the time step is limited only by the k
internal physical restrictiont < iy, independently of the size of the external/22 time
scale.

Hence, in the context of this paper, a magnetic field shall be called “strong” if it
desirable for reasons of numerical efficiency to use an algorithm which is not restrictec
condition (1).

Owing to the widespread use of the Velocity Verlet (VV) propagation scheme in M
codes, we will develop this algorithm within the VV framework, but the concept is mol
general and independent of the actual propagation scheme.

This paper is organized as follows:

o First, we briefly outline the basic concepts of the VV (Section 2).

e In Section 3 we show that the VV has to be modified to allow for magnetic fields, a
we present three different ways of doing so.

e A numerical example (Section 4) serves to compare these modifications.

e We finally show (Section 5) how the algorithm presented here can be incorporated |
propagation schemes of arbitrary order.

2. THE VELOCITY VERLET ALGORITHM

Let N be the number of particles inthe system. The positions, velocities, and accelerat
of the particles at timé are given by the three-dimensional vector@), v; (1), andg; (t),
respectively. The particle indeéXi = 1, 2, ..., N) will be omitted in formulae which apply
to all particles independently. The components of the vectors are referred to by subsc
X, Y, andz.

Sincev = dr/dt anda = dv/dt, we can write Newton’s equations as a system Nf 6
first-order ordinary differential equations,

o d

r = ari =V (2)
. d F

Vi=—Vi=a=_, (3)

dt m;
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wherem; is the mass of particle andF; is the force acting on particle In the most general
casea can be a function of all particle positions and velocities, and it may be explicit
time-dependent.

Among the variety of numerical algorithms for solving systems of first-order ordina
differential equations [1-5], the VV scheme [5, p. 81] is one of the most popular for M
simulations. In the notation of this paper it can be written as

r(t+ At) = r(t) + Atv(t) + (At 2a(t) + O((A1)3) (4)
alt + At) = a(r(t + At), ..., In(t+ AD; Vit + Ab), ..., Vn(t + AD); t + At)  (B)
V(t + At) = v(t) + SAt[at) + at + AD] + O((AD3). (6)

At first glance, this seems to be an implicit scheme, as referendes-tat appear on
both sides of Eq. (6). However, in many simple MD problems without external magne
fields, the particle accelerations do not depend on the particle velocities, allowing (5) to
replaced by

alt + At) = a(r1(t + At), ..., rn(t + AD); t + At). @

The order of evaluation of Egs. (4), (6), and (7) is now crucial: At ttmee can calculate
r(t + At) through Eq. (4), them(t + At) using (7), and finallw(t + At) via (6). The
implicit character of Eq. (6) thus disappears when the special structure (7) applies for
acceleration. In this case, the VV

e is explicit, i.e., without reference into the future: The system at imeAt can be
calculated directly from quantities known at tirne

e is self-starting, i.e., without reference into the far past: The system atAinean be
calculated directly knowing only the system at time 0.

o allows At to be chosen differently for each time step. This can be very useful wh
the accelerations vary strongly over time, as is often the case in the simulation of Coulc
systems. For details on how to choasteadaptively, cf. [2, p. 714].

e is a second-order integration scheme; i.e., the error te@(at)3).

e is time reversal invariant and symplectic [6—8].

e requires only one evaluation of the accelerations per time step.

Since calculating the accelerations is usually the most time-consuming part of a MD sir
lation code, its combination of advantageous features makes the VV the algorithm of cht
for a wide range of MD applications.

3. VELOCITY VERLET AND MAGNETIC FIELD

Inthe presence of a magnetic field acting on charged particles, the accelerations expli
depend on the velocities. Consequently, (7) no longer holds, and the VV is reduced to
implicit scheme (4)—(6). However, in the case of a static homogeneous external magr
field acting on a system which would fulfill (7) if the external field were absent, the VV ce
be modified to restore the explicit character.

With a homogeneous magnetic fid= (0, 0, B) pointing in thez direction, the accel-
eration on each particle is

a(t) = aS(t) — Qe, x v(t), (8)
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whereaC is the part of the acceleration which does not depend on the velocities,
a%(t) =a“(ri(®), ..., rn(): 1), 9

Q = qB/mis the Larmor frequency, are = (0, 0, 1) is the unit vector in the direction.

To simplify notation, we will assume a system where all the particles have the same cha
to-mass ratiaj/m. The argumentation can easily be extended to individual vaties

g B/m; per particle.

An important example foa® is a® = qE/m, whereE is the electric field acting on the
particle due to the pairwise Coulomb interactions within khgarticle system.

In the following subsections of this section, we present three different approache:
putting a magnetic field into the VV, which we shall call “inversionegfx v,” “Taylor
expansion,” and “velocity transformation.”

We will find that inversion is valid only for weak magnetic fields, whereas the other tw
by their very construction, apply for arbitrary magnetic field strengths. Second, Taylor
pansion is equivalent to velocity transformation to within terms of o@lgAt)2). Finally,
we will show that in the weak field limit all three approaches are consistent with each ot}

3.1. Inversion of e X v

Using the structure (8) of the acceleration with magnetic field, we can write the Vv
system (4)—(6) in a different way:

r(t+ At) =r(t) + Atv(t) + 3(At)2[aS(t) — Qe, x v(t)] + O((A1)®)  (10)

aC(t + At) = aC(ri(t + At), ..., rn(t + Ab); t + Ab) (11)
V(t + At) = v(t) + 2At[aC(t) — Qe, x v(t) + aC(t + At)
—Qe, x V(t + AD| + O((AD3). (12)

Since the cross produef x v only mixes thevy andv, components within each of the
individual particles in a linear way, (12) is a set of three linear equations per particle, wh
can easily be solved fant + At) explicitly:

vy (t + At) = W{vx(t) + $At[aS(t) + al(t + At) + 2Quy ()]

+ %(At)zﬂ[aﬁ(t) + aff(t + At) — Qui(®)] } + O((A1)3) (13)
vy(t + At) = (like (13), exchange <>y, replace? — —Q) (14)
vt + At) = vy(t) + SAt[aS(t) + al(t + At)] + O((AD3). (15)

Equations (10), (11), and (13)—(15) are an explicit, symplectic, and time reversal invari
algorithm including the magnetic field.

However, it can be seen that this algorithm becomes inefficient for a strong magn
field; i.e., it fails for time steps of the order o2 Q2. For example, the most simple case of
closed circular motion whea® = 0 andv,(0) =0 is not reproduced using Egs. (10), (11),
and (13)—(15) with a time stepit = 27/ Q.

A more geometric rather than our algebraic derivation of (13)—(15) is given in [3, p. !
ff.; 4, p. 111 ff.]; however, they do not write down the actual result (13)—(15) explicitly
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Reference [3, p. 59] states that this algorithm has “less than one percent erffokfor
0.35.” This is consistent with our numerical results in Section 4.
For purposes of comparison in Section 3.2.2, we cast Egs. (13)—(15) into an alterna
form by expanding [ %(QAt)Z]*1 with respect toAt:
ue(t + At) = ve(t) + FAt[aS() + aS(t + At) + 2Quy ()]
+ 3 (AH2Q[af(t) + af(t + At) — 2Quy ()] + O((AD)®)  (16)
vy(t + At) = (like (16), exchanga <y, replace2 — —Q) a7

vt + At) = v,(t) + SAt[aS(t) + aS(t + At)] + O((AD3). (18)

3.2. Taylor Expansion
3.2.1. Taylor Expansion Algorithm

Let us now explicitly assume that the magnetic field is arbitrarily strong§2.At, < 27
no longer holds, where the inversion algorithm was found to fail. Consider the Taylor set
forr(t + At),

)n dn2

qr22®. (19)

r(t+ At) =r(t) + Atv(t) +Z

wherea(t) is given in (8). Instead a2 At « 2, we assume tha@ At = O((At)°) or

Q=0(A) H=a=0(At)™), (20)
while we still have
r,v, a¢ %a = O((A1)°). (21)

Under these assumptions, we will

a. show that (19) is no longer properly sorted in ascending ordexs;of
b. expand the general term of (19) in orders\df and
c. perform the)_ >, for the first and second order aft as obtained in step b.

This will result in a new arrangement of the summation terms in (19) which is propel
sorted in orders oAt with a remainde©((At)3), and which must therefore replace (4) in

the VV.
An analogous procedure will then have to be carried out with the series

(At)n dn 1

v(t + At) = v(t) + Ata(t) + Z a). (22)

n=2

replacing (6).
a. The general term of the infinite sum in (19) is

(At)n dn—2

1 dr=2 act). (23)
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Sincea = a® — Qe, x v anda = dv/dt, we have

dn—2 dn—2 c dn—2
T T A R TS
dn—2 dn—3
= din-2 ac — Qez X Fa. (24)
By induction, we can derive
n-2

o L O((At)™)

from (20), (21), and (24), and therefore the order of the general term (23) is

(At)n dn72

Y dtn_za(t) = 0((AD™ O((AH ™) = O((AhY),

so clearly the Taylor series (19) is no longer sorted in ascending ordexs, afs every
single term iSO ((At)1).

b. Having found that (23) is of the ordéx((At)?!), we now proceed to explicitly calculate
its At and(At)2 components. The component of Eq. (19) is unaffected by the magnetic
field. To deal with the action of the cross product onxtady components in a convenient
way, we introduce a complex notation by the mapping

M:R®>C; b b=b, +ib,, (25)

whereb € R? is an arbitrary three-dimensional vectdrt maps the cross produet x b
into a simple multiplicatione, x b — —by + ibx = ib. M is not bijective, but as long
as we only consider cross products withwe know that the component of the result is
zero, and we can define an inverse mapping by

MLC—>R%  b=9%Rb+i3b— b= (b, Ib,0). (26)

Equation (24) is thus mapped into

dn—2 dn—2 c ) dn—3
Wa = Wa - |thn_3a. (27)

Recursively putting (27) into itselih — 3) times and finally applying (8), we obtain

dn-2 dn-2 c dn-3 c dgn—4 c c
a= a~-—iQ a-—iQ a“---—iQ@ —iQu)| ;.
dtn-2 dtn-2 { dtn-3 |:dtn—4 :| }

AsaC, v = 0((At)% andQ2 = O((At)~1), we can find the lowest orders at by collecting
the highest orders o:
n-2 1 2,C = 2—k dk C
- — (1 n— 1 n— 1 n—Z2—K_ =
dtn—Za_( iD)" v+ (—iQ)"ar + k§=l( i) dtka

= (=" v+ (-iQ)"2a% + O((At)* ™).
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The general term (23) is now

(A" d"-2 (—iQAH" [ v ac 3
= O((A1)®).
nl de2 n \Jie T Cige) TOUAYY
c. This result can finally be put into the original Taylor expansion (19), yielding, i
complex notation,

r(t+ At) = r(t) + Ato(t) +Z
n=2

{( IQAt)”(v(t) ac(t)

o (—iQ)2> " O((M)s)]

C
:r(t)+Atv(t)+[exp(—i§2At)_1_|_iQAt]<v(t) ) )

—iQ  (—iQ)?
+ O((A1)3).

We now applyM 1 to retrieve thex andy components, while the propagation formula
for thez component remains unchanged,

re(t + At) = ry(t) + é[vx(t) SIN(QAL) — vy(1)C(QAD)]

+ % [—aS(hC(QAD —aSMS@QAD] + 0((AD%  (28)
ry(t + At) = (like (28), exchangea <>y, replaceQ2 ——) 29)
r,(t + At) =r (1) + Atv,(t) + %(At)zaf(t) + O((At)?’)’ (30)

where we have defined

S(QAL) = Sin(QAL) — QAL (31)
C(QAt) = cogQAL) — 1. (32)

The analogous expansion of (22) is done in Appendix A. The result is

Uy (t 4 At) = vy (t) COSQAL) + vy (t) SIN(QAL) 4 = [ af(HC(QAL)

al(t + At) —af(t)

Con 1
+a; (t) sinQAY) | + o {— At C(QAD)
Ct + At) —a(t
& Ai & smm} +0((AD?) (33)
vy(t + At) = (like (33), exchanga <>y, replace2 ——<) (34)
vo(t + At) = v,(t) + FAt[aS(t) + aS(t + At)] + O((A1)3). (35)

The set (28)—(30), (11), and (33)—(35) of propagation equations is now a proper secc
order integration algorithm at arbitragg At which is not restricted toQAt « 2. Note
that these propagation equations do not refea, tout only toaC; i.e., the magnetic field
is entirely incorporated into the propagation equations. Irrespective of the strength of
magnetic field, the choice of the time stey is now determined only by the time scale
imposed bya®, i.e., by the internal physical properties of the system under consideratio
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However, this Taylor expansion algorithm is not invariant under time reversal, and 1
determinant of the Jacobian is-D ((At)#) in cases whera® is generated by a conservative
force (i.e.,V x a®=0), and 1+ O((At)?) otherwise.

3.2.2. Weak Field Limit

In the limit QAt « 1, the trigonometric functions in Egs. (28)—(29) and (33)—(34) ca
be expanded into their power series up to and including terms of the @d&§IAt)?),
yielding

Fx(t + At) = ry(t) + Atoy (1) + 3(AD2[aS () + Quy ()] + O((A?) (36)
ry(t + At) = (like (36), exchange < vy, replace — —Q) (37)
r2(t + At) = r5(t) + Atva(t) + 3(ADZa(t) + O((A1)3), (38)

which is precisely the propagation equation (10), and

ue(t + At = v (t) + 3At[aS() + al(t + At) + 2Quy (1)]

+3(AD2Q[3a%(t) + Fa7(t + At) — 2Que(t)] + O((AD%)  (39)
vy(t + At) = (like (39), exchanga <« vy, replace2 ——<) (40)
vt + At) = v,(t) + 2At[aS () + aS(t + At)] + O((AD?®), (41)

which looks subtly different from (16)—(17) due to téand% weights in the(At)? terms
of (39)—(40). However, this is not a true difference to within or@ At)3): Substituting
ay(t + At) = ag(t) + Atdaf(t)/dt + O((At)?) into either (39) or (16) yields in both
cases

ve(t + A = vx(t) + FAL[aZ(M) +ag(t + At) + 2Quy (1)
+32(Aa02Q[2a8(t) — 2Quy(1)] + O((AD3).

Furthermore, a2 = 0, the Taylor expansion algorithm simplifies into the field-free VV
(4), (9), and (6).

This clearly shows that the Taylor expansion algorithm (and, equivalently, the veloc
transformation algorithm to be presented in the following section) is the most gene
implementation of a static homogeneous external magnetic field in the VV algorithm.

3.3. Velocity Transformation

In this section we introduce a slightly more physical approach inspired by classi
electrodynamics which reproduces the propagation equations (28)—(30) and (33)—(35) 1
a different point of view, and which also yields an elegant generalization to arbitrary orc

Again, we consider aN-particle system under the influence of a static homogeneous €
ternal magnetic field, with the acceleration on the particles given by Eq. (8). Here, howe
we first solve the velocity propagation equations to desired accuracy, and then we ok
the corresponding equations for the particle position by integration:

t+At
r(t 4 At) :r(t)+/ v(t)) dt’. (42)
t
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In the following, we first review the harmonic oscillator solution obtained for non
interacting particles affected only by a magnetic field. As a next step, a time-indepenc
acceleratiora® = const. is incorporated by means of a transformation in velocity spac
Finally, we present a generalization of this transformation suitable for time-dependent
celerationsa®(t) and derive propagation equations from this transformation.

3.3.1. Simple Harmonic Oscillator Motion

A multiparticle system ofN particles without interaction between the particles (i.e.
a®=0) can be described b) independent equations of motion. Therefore it suffice:
to solve the equation of motion of one single particle. In this case, Eq. (8) simplifies
a(t) = v(t) = —Qe, x v(t). Thev, equation isv,(t) =0, yielding v,(t) = v,(0) = const.
Thewy andvy equations can be combined using the complex mapping (25),

o(t) = —i Qu(t), (43)

which is the differential equation of the simple harmonic oscillator. Givgn andr (t) at
some timet, we thus know (t + At) analytically:

vt 4 At) = v(t) exp(—i QAL). (44)

Rewriting this equation as(t’) = v(t) exp[-i Q(t’ — t)] and integrating it according to
(42) leads to

rt+ At =r) + iﬁv(t)[exp(—i QAt) — 1].

The particles move with constant velocityalong the direction of the magnetic field (the
direction) and gyrate arourlwith the Larmor radius, = v, /2 (wherev, =, /vZ + v§ =

const.) and the Larmor frequengy. If desired, the inverse mapping (26) provides propa
gation equations.

3.3.2. Static Acceleration

In a second step we will assume that the interaction betweemNtparticles can be
approximated by a time-independent, homogeneous acceleaiipn= a° = const. per
particle during one time step. Now we have to take into account all terms of (8) and
equations of motion become, in complex notationdpandvy,

b(t) = —iQu(t) +a° (45)
b,(t) = aS. (46)

Equations (45) looks quite similar to (43), except for the additional term caused by |
static acceleration. However, by means of a suitable velocity transformation, the equatio
motion (45)—(46) can be cast into the simple harmonic oscillator form. This is accomplist

by

D(t) = v(t) + iﬁaC 47)
U(t) = va(t). (48)
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For a physical interpretation of this transformation, see Appendix C. Notevthatnot
influenced and Eq. (46) is solved by(t + At) = v,(t) + Ata$. The transformation (47)
yields(t) = —i Q #(t), as desired. This can immediately be solved and backtransforme
resulting in

v(t + At) = (v(t) + '§ac> exp(—i QAt) — '§a°,
and integration (42) leads to
_ L Tc i EPTRLI.
r¢+ At) =r) + Q<v(t)+ Qa >[exp( i QAt) — 1] Qa At.

Again, propagation equations can be derived from these results with the inverse map
(26). These propagation equations are the same as (28)—(30) and (33)—(35) except fc
finite differencesa®(t + At) — aC(t) in the second-order terms of (33)—(34): The finite
differences vanish here sine& is assumed to be constant. Thus we find that under th
assumption we arrive at a propagation scheme which is second ordebu only first
order inv, which would not be efficient for MD simulation purposes in the VV framework
In order to obtain propagation algorithms of arbitrary orllethe time evolution of the
acceleration has to be taken into account.

3.3.3. Generalized Velocity Transformation

Let us first focus on th& andy directions. We start from
O(t + At) = —i Qu(t + At) + aC(t + At)

(cf. Eq. (45), witha® time-dependent), and put in the Taylor seriesddft + At),

k

c _ ap" d" . k+1
a“(t + At) = n§:O TR (t) + O((ADKY,
to arrive at
k
. _ (AH)" d"
b(t 4+ At) = —i Qu(t + At) + n§=0 i ﬁa‘:(t) + O((AD*HY). (49)

The aimis now once more to find a transformation of the velacity v which simplifies
(49) to a harmonic oscillator equatidiit + At) = —i Q2 T(t + At) + O((AHKtL) within
the orderO((At)¥t1). This is provided by

i\""d T (—iQADT
(&) (o)L =w)

m=0

k
Bt + At =v(t+ A+ > (50)
n=0

An analytic proof of this property is given in Appendix B. The solution{s + At) =
v(t) exp(—i QAt) as in (44); after backtransformation with respect to (50) and integratic
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according to (42) we get

=

-1 £\ N+l
v(t + At) = v(t) exp(—i QAt) + {(;) ((;jtnac(t)> exp,(—i QAt)]
n=0

+ O((ADkHY (51)

k-1 Lo\ N+l
rE+A) =rt)+> K;}) (jtnv(t)) exp, (—i QAt)} + O((ADKY,  (52)
n=0

with the definition exp(x) = exp(x) — Z X% As usual, the inverse mapping (26) provides

thex andy propagation equations. Trﬁe approprlate propagation equationsdonduv, to
the same order are

dn C (At)n+l Kl
va(t + At) = v,(t) + Z a2 ® ) o T O™ (53)

+0(AD*Y.  (54)

k—2 dn At n+2
rz(t + At) =r,(t) + Ato,(t) + Z <dt” g )> En +) 2)!

The derivativesi"a®(t) /dt" must be provided by the actual propagation scheme; the
have to be known at least up to and including or@&fAt)<"-2) and O((At)k"-1) for
ther andv propagation equations, respectively.

For example, if we choode= 2 and

ac(t + At) — aC(t)

d cp _ 1
ai? O = At + O((AD)"),

Egs. (51)-(52) and (53)—(54) are exactly the same as (28)—(30) and (33)—(35) in Section
i.e., the Taylor expansion and velocity transformation approaches arrive at the same re
for the VV algorithm including a static homogeneous external magnetic field; both are va
for arbitrarily strong magnetic fields.

4. NUMERICAL EXAMPLE

To give an illustration of the performance of the algorithms presented in Section 3,
calculate the trajectory of one single particle in an attractive Coulomb-like central poten
—|r|~* under the influence of a static homogeneous external magnetic field.

At t =0, the dimensionless particle position and velocity vectors are arbitrarily choser
ber(0) = (—1,0, —1) andv(0) = (0, 1, 0.1), respectively. The acceleration of the particle
is given by

r
a=-Qe xVv——:.

Ir|

We integrate the equations of motion (2)—(3) numerically fiom0 to t =20 for dif-
ferent combinations of the parameta®sand At as listed in Table I, exploring a range
of QAt=1073...10%3. For each pair of parameters, we use both the inversion alg
rithm [propagation equations (10), (11), and (13)—(15)] and the Taylor expansion algorit
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TABLE |
Choice of Parameters(2 and At for the
Numerical Example

Q=1 =100 Q=10,000

At =0.001 0.001 0.1 10
At =0.003 0.003 0.3 30
At =0.01 0.01 1 100
At =0.03 0.03 3 300
At =01 0.1 10 1000

Note Column and row headings afeandAt,
respectively; table entries afgAt.

[propagation equations (28)—(30), (11), and (33)—(35)] and compare their performance
evaluating the following two observables:

A. Maximum relative deviation of the modulus of the radius vectr (t) from the
“exact” trajectoryrq (1), i.e., from the trajectory calculated with the Taylor expansior
algorithm at the smallest step sia¢ = 0.001.:

)| — t
Af = max Iro, at(®] — re, ex(t)] (55)
0<t<20 Ire, ex(t)]
B. Maximum deviation of total energy,
E®)—E(t=0
AE = max | "D EL=01) (56)
0<t=<20 E(t=0)

whereE(t) is the sum of kinetic and potential enerdit) = %|v(t)|2 —r@)

4.1. Position DeviationAr

Figure 1 shows the behaviour of the position deviation (55) as a functidt aind Q2
for both integration algorithms. In both algorithms the deviation scaleg likg?, as is to
be expected for second-order methods. Except for the smallest magneti@ field the
Taylor expansion algorithm performs better than the inversion algorithm by several orc
of magnitude, regardless of the size of the time si¢pThis difference in quality grows
with increasing magnetic field: Inversion performs the bettemtbakethe magnetic field,
whereas Taylor expansion performs the better,stinengerthe magnetic field. At weak
magnetic field @ = 1), the position deviations of both algorithms are practically the sam
This could have been expected, as we showed in Section 3.2.2 that both algorithms
equal in the weak field limit.

A closer look at an actual particle trajectory is given in Fig. 2, which shows the tin
evolution of|r(t)| at 2 = 1000, calculated with the inversion algorithm at three differen
step sizes. The results of the Taylor expansion algorithm for any of these step sizes
indistinguishable from thet = 0.001 curve. The inversion algorithm is drastically wrong
at large time steps.
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FIG. 1. Relative deviation of position as defined in (55) as a function of step/sizeower panel: inversion
algorithm; upper panel: Taylor expansion algorithm. Lines indicate the magnetic field str@rgth(dot dashed),
Q = 100 (dashed), angt = 10,000 (solid).

5 T T ¥ T T T

4| -
| At=0.1

L AA
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At=0.03

distance from origin Ir(t)l

0 5 10 15 20
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(=]

FIG. 2. Time evolution of the distance from the origjn(t)| at 2 =1000. Solid line: Taylor expansion
algorithm with any step size and inversion algorithm\at= 0.001; wriggly line close to the solid line: inversion
algorithm atAt =0.03; fringes far from the solid line: inversion algorithmzt = 0.1.
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4.2. Energy DeviationAE

For most many-particle MD simulations, the position deviation is not a sensible meas
of integrator accuracy, since the individual particle trajectories behave (deterministica
chaotically; i.e., small changes ixt can create entirely different particle trajectories wher
the simulation time is large compared to the time scale of collisions in the system.

In conservative systems, the relative deviation of the total energy from its initial val
(56) is a useful tool for monitoring the accuracy of the integration algorithm. Figure
shows this energy deviation in our example as a functiontodndS2 for both integration
algorithms.

The results are qualitatively the same as for the position deviation:

The error scaling is proportional ta\t)? in both cases.
Taylor expansion improves with growing magnetic field.
Inversion gets worse with growing magnetic field.
e There is no combination of parameters where inversion outperforms Taylor expans
At strong fields Taylor expansion performs better by several orders of magnitude.

1e+01 T

1e+00 - Taylor expansion algorithm -
1e-01
1e-02
1e-03
1e-04

1e-05

relative deviation of energy AE

1e-06

relative deviation of energy AE

1e-03 T
1e-04 [ .
inversion algorithm
1e-05 [ b
1e-06 [ 1
0.001 0.01 0.1

timestep At

FIG. 3. Relative deviation of total energy as defined in (56) as a function of stepAdizeéower panel:
inversion algorithm; upper panel: Taylor expansion algorithm. Lines indicate the magnetic field st€ergth:
(dot dashed)s2 = 100 (dashed), ang = 10,000 (solid).
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5. BEYOND VELOCITY VERLET: EXPANSION TO ARBITRARY ORDER

In some MD applications it may be desirable to use higher order propagation scher
such as Runge—Kutta or predictor—corrector methods, instead of the second-order VV.
must then be taken to incorporate the magnetic field to at least the same order into
propagation equations.

Itis straightforward to push both the Taylor expansion and the velocity transformationr
an arbitrary ordek, and one finds that the resulting propagation equations obtained frc
the two methods are identical at aky

For the velocity transformation algorithm, the general result has already been presel
in Egs. (51)-(52) and (53)—(54). The generalization of the Taylor expansion is conceptu
simple, but rather clumsy to write down; therefore it will be omitted here.

6. CONCLUSION

We have presented a method for incorporating arbitrarily strong static homogene
external magnetic fields into the second-order Velocity Verlet propagation algorithm. C
method can be derived either from a suitable Taylor expansion or from a generalized velo
transformation. Itresults in a scheme where the choice of the time stepis entirely indepen
of the strength of the magnetic field. If desired, the method also allows the developmer
analogous schemes for higher order propagation algorithms.

The second-order scheme has been incorporated successfully into various MD simulz
codes, investigating both stopping power [9-11] and radiative recombination [12] of hig|
charged ions in magnetized electron plasmas, and electron beam dynamics in ele
coolers [13].

Currently, we are trying to improve the Taylor expansion algorithm by additionally ir
cluding time reversibility and symplecticity conditions into the construction a priori.

APPENDIX A: DERIVATION OF EQUATIONS (33) AND (34)

Equations (33) and (34) can be derived from (22) as follows:
Replacingn by n 4 1in (27), we get

dnfl dnfl c ] dn72
dtn—la = dtn—la o Ithn—Za’

which we recursively put into itselih — 2) times to arrive at

dn_l dn—l dn 2 dn—3 c ) c )
Wa qi- T —|Q{dn2 IQ|:dt“ 3a - —1Q2(>a —|Qv)}}.

We obtain the lowest orders aft by collecting the highest orders &f:

n—1 n—1 k

d d
1,C 2 1-k c
= ———a= (=" + (" a" + (=i dta +§ (=i )" dtka

= (=i Q)"+ (-’ + (—i)"" 2d 2 C+onan®m.
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Thus we have

(AD)" dnfla_(—iQAt)“ a® daC/dt
N de1oT T ql T T i)z

) +0((An?),
which we put into (22) to get

u(t + At) = v(t) + At[aS(t) — i Qu()]

> [(—=iQAL)" aC(t) daC(t)/dt
+Z{7n! (v(t)—i—_m Ciar

) + O((At)ﬂ

n=2
= v(t) + AtaC(t) — i QAtu(t) + [exp(—i QAL) — 1+ i QAL]
ac(t) dat(t)/dt
-iQ ' (-iQ)?

x (v(t) + ) + O((AD)3).

Application of M~ results in
Vit + At) = vy (1) COIQAL) + vy (1) SIN(QRAL) + é [~aS(H)C(QAL) + a(t) sin(QAD)]

1 d C d C 3
+ o [—dtax (H)C(QAL) — dtay(t)S(QAt)} + O((AD?)

vy(t + At) = (like vy (t + At), exchange < y and replace&2 ——<)
with SandC as defined in Egs. (31) and (32). The derivatia®/dt appears only in the
term 1/ Q2[- - -], which is of the ordeO((At)?). Itis therefore sufficient to replacka®/dt

by the approximatiomla®(t)/dt = [aC(t + At) — a®(t)]/At + O((At)Y), which leads to
Egs. (33) and (34).

APPENDIX B: ANALYTIC PROOF OF TRANSFORMATION (50)
First we reorganize Eq. (50) and derive it with respedt to

i\ d . b (—iQADT
(&) (o) 55

k
v(t + At) = T)(H—AI)—Z

n=0 m=0
k i\ N+l 1 n ; m
. s i dmtt o (=i QAL
Dt + At) = B(t + At) — n; (9) (dt”+1a (t)) mZZOT .
After putting both equations into Eq. (49), we get
K
. . [NSLN LI
Bt + At) = —iQU(t + A) + ; S gma ®
k-1 i\ N+l 1 n ; m
i dmt (—iQAL)
+3|(5) (fraen) X S
n=0 m=0
k N S n :
. i d" —iQAH)™
+iQ> (5) (ﬁac(t)) > (T + O((ADKY. (57)
n=0 m=0

Note that, to withinO((At)¥*1), it suffices to extend the second sum o@ﬁ;é instead
of S-¥_,, since the(n =k) term is of the ordeO (1) = O((At)*+1). Equation (57) is
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the equation of the harmonic oscillator, if the theg terms cancel to withiD ((At)kt1).
Indeed, rewritingZ'f;é into "X _,, we find

(Aay" d" o .\ X (—iqatm
SOy | () (o) S
i\"/d A€ T (—iQApm
(&) (@0) L=

m=0

k
n=0
K (apn dn
:g o (t)+Z( ) <dt“a (t))

-1

2 (—iQADHM (—iQAH™
x [Z m Z m!

m=0 m=0

k .
_ (AH)" dn e an _(—IQAt)” _ _Ciy
S (1) () ] e

APPENDIX C: PHYSICAL INTERPRETATION

—ac()

In this part we want to illuminate what has been done in Section 3.3.2 from a physi
point of view. Assigning an equivalent electric fidfid= ma‘/q to the acceleratioa®, the
transformation of the velocities in (47) can be interpreted as a special Lorentz transforma
in the non-relativistic limit:

A Lorentz transformation to a coordinate fratiémoving with a velocityu with respect
to the original frameK will transform the electric and magnetic fields according to [14
p. 552, here in Sl units]:

2

/ )4 u
E'=vy(E B) — —=u-E 58
y( +UX ) ]/+1C2u ) ( )
1 y?
B = B-— E)) - — B
V( 2 ux )) T1eU B (59)

wherey = 1/4/1 — (u/c)?, andc is the velocity of light in vacuum. In the non-relativistic
limit ¢ — oo, Egs. (58) and (59) simplify into
EE=E+uxB (60)
B’ =B. (61)
The aim is to obtain harmonic oscillator equations of motiorKin To achieve this, the

electric field components perpendicularBanust vanish inK’. With B = Be,, we thus
choose the relative velocityto be

ExB _ Exe
B2 B
u is also called “drift velocity.” Equations (60) and (61) now become

u=

=(E-e)e,=(0,0Ey
B'=B=(0,0,B).
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K K

-a -e

B® B®

X X

FIG. 4. E x B drift of a negatively charged particle projected onto the plane perpendicuantthe frames
of referenceK andK'. The orientation of the plane is chosen to hayas the drift direction. The motion alorigy
is not visible in this projection. Positive charges would rotate clockwise, but their drift directiérisrthe same.

The motion inK’ is made up of a gyration arourgland an acceleration alorigjdue to
E.. Additionally, in the original frameK, a uniform drift alonge x B with velocity u is
superimposed. Figure 4 gives a graphic representation of the particle orbit projected
the plane perpendicular ®.
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